气溶胶光学厚度
网格、群、图、测地线与切线空间1:所谓5G,就是Grid,Group,Graphs,GeodesicsandGauges。深度学习本质上就是这五类几何对象及变换;2:几何对称性的内蕴意义,可以诠释在深度学习中的诸变换,包含但不止于CNN,GNN,LSTM,Transformers,DeepSet,meshCNNetc.
在深度学习中,Geodesics和Gauges是两个与流形相关的概念。Geodesics指的是流形上的最短路径,也就是两点
这是我国首次利用激光雷达对南极圈—赤道—北极圈航路气溶胶进行走航式连续观测,也是首次对南、北极圈实现跨季节连续观测,获得了丰富的多纬度、多季度、多类型气溶胶
AVCOAT是由航空集团(AVCO)制造的特定烧蚀隔热材料。AVCOAT被用于阿波罗飞船指挥舱的隔热系统中。[4]尽管AVCOAT并未用于航天飞机轨道器,但NASA正在将该材料用于其下一代猎户座宇宙飞船。AVCOAT由环氧酚醛树脂,含特殊添加剂的玻璃纤维组成,密度约为0.51g/cm3,烧蚀后生成密度为0.107g/cm3的碳和密度为0.13g/cm3的二氧化硅。
后期部分HRSI被复合加工纤维绝热瓦(FRCI)替代。FRCI瓷砖提高了材料的耐久性与涂层的抗开裂性,在重量上也得到了减轻。
气溶胶是什么东西
可重复使用的低温绝热材料(LRSI)覆盖在前缘附近的上翼,还用于前、中、后机身,垂直尾翼和轨道机动系统/反应控制系统吊舱的区域。这些瓷砖防护的再入温度低于649°C。LRSI瓷砖制造方式与HRSI瓷砖相同,但当轨道器暴露在直射阳光下时,白色有助于消除轨道器的热量。
但在STS-114飞行中,部分间隙材料被认定存在潜在的安全风险,随后NASA移除了这些间隙材料。间隙填充物可能会引起机身下方产生湍流气流,进而导致进一步加热,可能损坏轨道器。
碳纤维强化碳复合材料(RCC),是一种亮灰色材料,可承受的再入温度高达1510°C,可保护机翼前缘和机头盖。每个轨道器的机翼都有22个RCC面板,厚度约为6.4到12.7毫米。每个面板之间的T形密封允许这些面板和机翼之间存在热膨胀或横向移动。
国外已形成比较成熟的热防护系统试验验证及评估技术体系,验证试验涵盖了防热材料的热胀系数、热扩散系数、烧蚀率、震动及其耦合效应、空间碎片和微粒的高速冲击等各个方面。高温隔热材料主要有密度小、耐温高、热膨胀系数小、烧蚀率低、热扩散系数小等性质。
间隙填充材料由白色AB312纤维或黑色AB312布套(含有氧化铝纤维)制成。这些材料用于机头前缘,、侧舱盖、机翼、垂直稳定器和航天飞机主发动机等部件的隔热罩。门和移动表面在热防护系统中不可避免地产生了开放性间隙,必须保护其免受热量的影响。可将间隙填料添置在门和移动表面上,通过防止形成涡流来减小升温。
气溶胶的名词解释
PICA由NASA艾姆斯研究中心在20世纪90年代研制。“星辰号”探测器返回舱大面积采用了PICA。返回舱进入大气层时飞行速度高达12.9km/s,刷新了宇宙探测器再入时飞行速度的新纪录,成为了有史以来最快的返回式航天器。PICA对于2006年返回地球的“星尘”任务的可行性至关重要。“好奇号”火星探测器也使用了PICA隔热罩进入火星大气层。
LRSI瓷砖可以重复使用多达100次任务再进行翻新。每次任务后,这些瓷砖都会在装配车间中接受检查,在下一次任务前更换受损的瓷砖。在必要时,将间隙填料的织物片插入瓷砖之间,使得瓷砖之间紧密贴合,防止过量的等离子体穿透间隙。
这种防热材料已经随神舟飞船返回舱经历了十几次的实战测试,验证了其良好的防热性能,每次返回舱返回地球后,科研人员会到现场对烧蚀后的材料进行取样研究,为后续更好地进行太空探索任务做好准备。
再入过程中因气动加热,航天飞机机头锥帽部位的峰值温度可达1650°C;机翼前缘部位峰值温度可达1260°C;迎风面区域的峰值温度约为500-1260°C;测背风面的峰值温度则低于500°C。由于各部位热防护系统所处环境不同,航天飞机轨道器采用了多种隔热材料进行热防护。受热载荷最重的机头、机翼前缘部位使用RCC材料;迎风面使用了氧化硅型刚性陶瓷防热瓦;热载荷较低的背风面使用了氧化硅型柔性隔热毡。
添加新评论